

Part 1: (E)ER data model

Assumptions:

- 1. Each room has only one sensor node which will generate temperature, sound, and light measurement records.
- 2. Each sensor node generates measurement records 5 times a day:
 - 10:30:00
 - 12:30:00
 - 14:30:00
 - 16:30:00
 - 18:30:00

Part 2: Map the (E)ER diagram into relational schema

department (D_Name: VARCHAR(30), D_Phone_No: INT, Web_Address: VARCHAR(30), D_Email: VARCHAR(30), D_Street_No: INT, D_Street_Name: VARCHAR(30), D_City: VARCHAR(30), D_Zipcode: INT, D_State: VARCHAR(30), PRIMARY KEY(D_Name))

building (B_Name: VARCHAR(30), No_of_Rooms: INT, No_of_Floors: INT, B_Street_No: INT, B_Street_Name: VARCHAR(30), B_City: VARCHAR(30), B_Zipcode: INT, B_State: VARCHAR(30), PRIMARY KEY(B_Name))

employee (E_ID: VARCHAR(30), E_Name: VARCHAR(30), E Birthdate: DATE, E_Street_No: INT, E_Street_Name: VARCHAR(30), E_City: VARCHAR(30), E_Zipcode: INT, E_State: VARCHAR(30), PRIMARY KEY(E_ID))

employee_email (E_ID: VARCHAR(30), E_Email: VARCHAR(30), PRIMARY KEY(E_ID, E_Email), FOREIGN KEY(E_ID) REFERENCES employee)

sensor (Node_ID: INT PRIMARY KEY)

room (B_Name: VARCHAR(30), Room_No: INT, Area_SF: FLOAT, Lab_Flag: IN {0,1},

Office_Flag: IN $\{0,1\}$, Conference_Flag: IN {0,1}, Node_ID: INT, PRIMARY KEY(B_Name, Room_No), FOREIGN KEY(B_Name) REFERENCES building,

FOREIGN KEY(Node_ID) REFERENCES sensor)

room_phone (B_Name: VARCHAR(30), Room_No: INT, Room_Phone: INT, PRIMARY KEY(B_Name, Room_No, Room_Phone),

FOREIGN KEY(B_Name, Room_No) REFERENCES room(B_Name, Room_No)) measurement (Node_ID: INT, Record_Date: DATE,

Record_Time: TIMESTAMP(2),

Temperature_F: FLOAT, Sound_dB: FLOAT, Light_cd: FLOAT, PRIMARY KEY(Node_ID, Record_Date, Record_Time),

FOREIGN KEY(Node_ID) REFERENCES sensor)

work_in (E_ID: VARCHAR(30), B_Name: VARCHAR(30), Room_No: INT,

PRIMARY KEY(E_ID, B_Name, Room_No), FOREIGN KEY(E_ID) REFERENCES employee FOREIGN KEY(B_Name, Room_No) REFERENCES room(B_Name, Room_No))

work_for

(E_ID: VARCHAR(30), D_Name: VARCHAR(30), PRIMARY KEY(E_ID, D_Name), FOREIGN KEY(E_ID) REFERENCES employee, FOREIGN KEY(D_Name) REFERENCES department)

Part 3: Create a relational database based on part 2 and query the database

- 1. The experiment environment: Oracle
- 2. The 300 tuples values of table 'measurement' are inserted via loop clause 'for' and random-
- number generation clause 'dbms_random.value'. 3. Because each measurement record is generated by random-
- number, every new experiment will produce a different result.
- 4. Attachments:
 - output_LongZhang.txt
 - HW1_LongZhang.sql
- 5. Query the database

```
prompt 'Q1: List the phone number and department name for each department';
SELECT D_Name, D_Phone_No
FROM department;
prompt 'Q2: Find the names of the buildings that have less than 4 floors';
SELECT B_Name, No_of_Floors
FROM building
WHERE No_of_Floors < 4;</pre>
prompt 'Q3: Find the ids of the employees that work in any labs';
SELECT DISTINCT W.E_ID
FROM work_in W, room R
WHERE W.Room_No = R.Room_No AND W.B_Name = R.B_Name AND Lab_Flag = 1;
prompt 'Q4: Find the average temperature for each room';
-- Because each measurement record is generated by random-number, every new experiment will produce a different result.
SELECT R.B_Name, R.Room_No, M.Node_ID, M.AVG_Temperature_F
FROM room R
INNER JOIN
   SELECT Node_ID, AVG(Temperature_F) AS AVG_Temperature_F
   FROM measurement
   GROUP BY Node_ID
   ORDER BY Node ID
   ) M -- Table M consists of values of average temperature for each sensor node
ON R.Node_ID = M.Node_ID;
prompt 'Q5: Count the number of employees for each department';
SELECT D_Name, Count(*)
FROM work_for
GROUP BY D_Name;
```

```
prompt 'Q6: Find the room number of the brightest room (based on daily average of measured light value)';
-- Because each measurement record is generated by random-number, every new experiment will produce a different result.
SELECT A.B_Name, A.Room_No, A.AVG_Light_cd AS Max_AVG_Light_cd
FROM
    SELECT R.B_Name, R.Room_No, M.Node_ID, M.AVG_Light_cd
    FROM room R
    INNER JOIN
        SELECT Node_ID, AVG(Light_cd) AS AVG_Light_cd
        FROM measurement
        GROUP BY Node_ID
        ORDER BY Node_ID
        ) M -- Table \overline{M} consists of values of average light for each sensor node
    ON R.Node_ID = M.Node_ID
   ) A -- Table A is the joined table of table R and table M.
WHERE
    A.AVG_Light_cd =
    SELECT MAX(M.AVG_Light_cd)
        SELECT Node_ID, AVG(Light_cd) AS AVG_Light_cd
        FROM measurement
        GROUP BY Node ID
        ORDER BY Node ID
        ) M -- Table \overline{\mathsf{M}} consists of values of average light for each sensor node
```